136. ¹H-NMR Spectroscopy of Gold Drugs. High-Resolution Studies of β-D-Thioglucosetetraacetate Phosphine Complexes of Au(I)

by Paul S. Pregosin

Laboratorium für Anorganische Chemie, ETH-Zentrum, Universitätstrasse 6, CH-8092 Zürich

and Edwin D. Becker

Laboratory of Chemical Physics, N.I.A.D.D.K., National Institutes of Health, Bethesda, Md. 20205, U.S.A.

(1.III.83)

Summary

¹H-NMR data (11.74 Tesla) for the gold (I) complexes [R₃P-Au-(2, 3, 4, 6-tetra-O-acetyl-1-thio- β -D-glucopyranosido-S)](R=Et, Cyclohexyl, C₆H₅, *p*-CH₃OC₆H₄) with sulfur coordination to gold, are reported. The resonances associated with the sugar protons have been assigned although these have similar chemical environments. The coordination chemical shifts, $\Delta\delta$, for the Au-S-C-H proton are ≈ 0.6 ppm, and support S-coordination to gold.

Introduction. - Gold complexes have been used in arthritis therapy for many years [1-3]. Amongst those currently in use are the compounds 1-3 with the thiolate ligands thiomalate, thiosulfate and thioglucose, respectively. All of these complexes contain several S-coordinated ligands although the exact coordination

number and geometry is not always clear, *e.g.*, for 1 polymers are thought to be involved [2]. Even where the coordination chemistry is clear, the biochemistry with respect to the role of the gold remains uncertain [1-3]. Recently, the phosphine complex (2,3,4,6-tetra-O-acetyl-1-thio- β -D-glucopyranosido-S)triethylphosphine-gold (I) (= auranofin, 4a [4]), has been found to be a useful drug which can be taken orally. This linear gold (I) complex is monomeric and is thought to have a P-Au-S-arrangement of atoms. There is ample crystallographic support for such a geometry, *e.g.*, for 2 an S-Au-S angle of 176.5° has been found [5], and in [Au(C₆F₅) (PPh₃)] the C-Au-P angle is 178° [6].

The solution behavior of several gold drugs has been studied by ¹H-, ¹³C- and ³¹P-NMR spectroscopy [7-10]. Using ³¹P-NMR, auranofin has been studied in terms of its possible interaction with albumin [7], and the same spectroscopic technique has been used to monitor the reactions of [Au Cl (PEt₃)] with glutathione [1] [8]. ¹³C-NMR spectroscopy has shown that gold (I) thiomalate exchanges with a variety of thiols, and species of composition Au (SR)_n¹⁻ⁿ were suggested.

Although both these forms of NMR spectroscopy will continue to prove valuable, we have concerned ourselves with the ¹H-NMR characteristics of **4b** and its gold complexes, since this ligand is a component of both auranofin (**4a**) and solganol (**3**). Specifically, we were interested in determining the feasibility of using this method to monitor changes in the thioglucose due to coordination. This approach will allow us to develop a base of data concerned with *all* of the potential coordination sites of the sugar should the O-atoms eventually be involved. To this end we have measured ¹H-NMR spectra at 11.74 T (500 MHz), to overcome potential problems arising from the similarity of the sugar ¹H chemical shifts, and report here our model studies for the complexes [R₃P-Au-(2,3,4,6-tetra-O-acetyl-1-thio- β -D-glucopyranosido-S)] (R=Et, **4a**; R=cyclohexyl(Cy), **5**; R=C₆H₅, **6**; R=*p*-CH₃OC₆H₄, **7**).

Experimental. - The β -D-thioglucose tetraacetate **4b** was obtained from *Aldrich* and used without further purification. Na(AuCl₄] · 2 H₂O was purchased from *Johnson-Matthey* and used directly. A sample of auranofin (**4a**) was kindly provided by Dr. *B. Sutton* of *Smith Kline and French Philadelphia*, U.S.A. The complexes [AuCl(PR₃)] with R=aryl, were prepared using the method described by *DeStefano & Burmeister* [11]. The thiolate-phosphine gold complexes were synthesized as described by *Schmidbaur et al.* [12]. Specifically:

 $[AuCl(PR_3)] + \beta$ -D-thioglucose tetraacetate

 $\frac{CH_2Cl_2, NEt_3}{[(PR_3)Au(\beta-D-thioglucose tetraacetate-H)]} + NEt_3 \cdot HCl$

Typically the reactions were carried out using $\simeq 100$ mg of gold complex and although the products were usually obtained in essentially quantitative yield, as judged by the ¹H- and ³¹P-NMR, they sometimes proved difficult to crystallize. Thus for P(CH₃OC₆H₄)₃, the product is a colorless solid, whereas for PCy₃ an oil was obtained.

Preparation of [AuCl(PCy₃)]. Solid PCy₃ · CS₂ (360 mg, 1.0 mmol) was added to a solution of Na[AuCl₄] · 2 H₂O (199 mg, 0.5 mmol) in 20 ml EtOH. The dark suspension which results was warmed to 50° and maintained at this temperature for 45 min. The colorless filtrate was removed and the remaining solid washed successively with H₂O, EtOH and Et₂O. The product as a colorless solid was then collected (0.195 g, 76%) and shown to be pure by ³¹P-NMR. ¹H- and ³¹P-NMR spectra were measured as CDCl₃-solutions using a *Nicolet* spectrometer operating at 500 MHz for ¹H and 202 MHz for ³¹P. Routinely, 45° pulses were employed with acquisition times of 1-2 sec. ³¹P chemical shifts are relative to external H₃PO₄; ¹H chemical shifts relative to TMS.

Results and Discussion. - ¹H-NMR data for the gold complexes, as well as for the protonated ligand are shown in the *Table* and the following points are worth mentioning: 1) High-field ¹H-NMR spectroscopy when combined with ¹H (¹H)-experiments allows for a complete assignment of all of the ring sugar protons in

Fig. 1. ¹H-NMR Resonances of the Sugar Protons of **4b** (Note that a) H¹, the proton adjacent to the SH-group, appears at about 2270 Hz and b) that the SH proton couples to H¹)

Fig.2. ¹H-NMR Resonances of the Sugar Ring Protons of 6 (The resonances for H¹ and H³ overlap)

both the thiol and many of its complexes. The double-resonance experiments started from the readily recognizable ABX-pattern for H^5-H^7 , after which all of the ring protons were readily traced. 2) The proton H^1 closest to the S-atom experiences a moderate downfield shift of $\simeq 0.6$ ppm on complexation, consistent S-coordination. 3) The remaining ¹H-signals in the complexed thiolate, including the acetate CH₃-resonances, do not significantly change their position relative to the ligand 4b. All four acetate CH_3 -resonances are well-resolved. 4) The CH_2 -resonances (H^6 and H^7) are non-equivalent. 5) In the thiol the exchange of the S-H proton is slow in CHCl₃ $J(H_1-C-S-H)=10$ Hz. 6) The substituent R in the phosphine ligand does not strongly influence any of the ¹H-NMR parameters of the complexed thiolate.

Point 1 is of value in that it might now prove useful to consider ¹H-NMR studies of the reaction of gold drugs with various biologically pertinent molecules. Figures 1 and 2 clearly show that almost all of the protons in both the thiol and

Table. ^H-NMK Data for the Complexes ^a)							
Compound	H1	H ²	H ³	H ⁴	H ⁵	H ^{6,7}	OAc
β -D-thioglucose(OAc) ₄ ^b) (4b)	4.540	4.960	5.179	5.090	3.717	$ \begin{cases} 4.249 \\ 4.129 \end{cases} $	$ \begin{cases} 1.995, 2.010\\ 2.068, 2.081 \end{cases} $
						$^{2}J = 12.5$	
	(10)	(10)	(10)	(10)	(10)	$\begin{cases} {}^{3}J = 2.5 \\ {}^{3}J(\mathrm{H}^{1},\mathrm{H}^{5}) = 10) \end{cases}$	
Et ₃ P-Au- β -D-thio- glucose(OAc) ₄ (Aura- nofin) ^c) (4a)	5.139	4.948	{comp 5.08}	lex	3.692	$ \left\{ 4.070 \\ 4.212 \right\} $	$ \left\{ \begin{array}{c} 1.952, 1.980 \\ 2.022, 2.046 \end{array} \right\} $
	(10)		H ³ lower field than H ⁴			${}^{3}J = 2.5$ ${}^{2}J = 12$	
$Cy_3P-Au-\beta$ -D-thio- glucose(OAc) ₄ (5)	5.153	5.016	5.128	5.048	3.710	{4.084 {4.229}	$ \begin{cases} 1.970, 2.001 \\ 2.059, 2.071 \end{cases} $
	(9)	(9)	(9)	(9)	(10)	$\begin{cases} {}^{3}J = 2.5 \\ {}^{2}J = 12 \end{cases}$	
Ph ₃ P-Au- β -D-thio- glucose(OAc) ₄ ^d) (6)	5.180	5.060	5.153	5.112	3.77	{4.134 {4.226}	$ \left\{ \begin{array}{c} 1.900, \ 1.982 \\ 2.029, \ 2.057 \end{array} \right\} $
	(9)	(10)	(≃10)	(10)		$\begin{cases} {}^{3}J = 2.5 \\ {}^{2}J = 11 \end{cases}$	
$(p-CH_3OC_6H_4)_3P-Au-$ thioglucose $(OAc)_4^c)$ (7)	5.148	5.034	5.146	5.098	3.75	{4.106 {4.196}	{ 1.886, 1.955 } { 1.992, 2.032 }
	(9)	(9)	(9)	(10)		$\begin{cases} {}^{3}J = 2.5 \\ {}^{2}J = 12 \end{cases}$	

Invino

- d) Assigned by analogy with 5.
- e) Aromatic protons: 6.96 and 7.45, CH₃O at 3.82.

In CDCl₃ at r.t. Values in parenthesis are ${}^{3}J(H,H)$. When only one value is given this implies a) equivalent coupling constants. Coupling constants are ± 1 Hz.

^b) $\delta(SH) = 2.314, {}^{3}J(H, H) = 10.$

c) $\delta(^{31}P) = 37.3, \, \delta(CH_2) = 1.822, \, \delta(CH_3) = 1.194.$

complex give well-resolved resonances. In the Ph_3P -complex, H^1 and H^3 have similar chemical shifts although ${}^{1}H{}^{1}H{}^{1}$ -experiments allow the correct assignment. Regrettably, for the commercial complex auranofin (4a) there is appreciable overlap, indeed the spectrum has considerable second – order character – nevertheless an assignment is possible¹).

Knowing the chemical shift of H^1 in the complexes should prove a useful empirical tool in studies where exchange of thiol is possible [7-10]. The high-field position of H^1 in the protonated ligand, $\delta = 4.450$, relative to its value in the complexed thiolate, $\delta = 5.139-5.180$, will facilitate its recognition if the thioglucose is set free.

Point 3 is logical in that sites remote from coordination are not expected to experience large changes, as is point 4 since we are studying chiral molecules. In connection with this nonequivalence of the CH₂-protons, we note that, in all cases, the low-field half of the H⁶, H⁷AB spin system shows a larger coupling to H⁵, $\simeq 5$ Hz, than does the higher-field proton. The geminal coupling constant ${}^{2}J$ (H⁶, H⁷) $\simeq 12$ Hz is constant throughout our series, as are all of the vicinal coupling constants associated with the sugar moiety (${}^{3}J$ (H, H) $\simeq 9$ -10 Hz). The absence of changes in the chemical shift data as a function of the tertiary phosphine suggests that either the *trans*-influences of these ligands are very similar or that the thioglucose protons are insensitive to these differences.

P.S.P. thanks the National Institutes of Health for financial support.

REFERENCES

- [1] P.J. Sadler in 'Structure and Bonding' 29, 171 (1976).
- [2] C. F. Shaw in 'Inorganic Perspectives in Biology and Medicine' 2, 287 (1979).
- [3] K.C. Dach & H. Schmidbaur in 'Metal Ions in Biological Systems' (Ed. H. Siegel) Marcel Dekker Inc., 14, 179 (1982).
- [4] D. T. Hill, I. Lantos & B. M. Sutton, U. S. Patents 4, 115, 642 (1978) 4, 122, 254 (1978) 4, 124, 759 (1978) 4, 125, 710 (1978) 4, 114, 711 (1978); Smithkline Corporation, Jap. Kokai Tokyo Koho, 78, 132, 528; Chem. Abstr. 90, 168922 (1979); D. T. Hill, I. Santos & B. M. Sutton, U. S. Patent 4, 133, 952 (1979) chem. Abstr. 90, 127542 (1979).
- [5] H. Brown, J. Am. Chem. Soc., 49, 958 (1972); H. Ruben, A. Zalkin & M.O. Faltens, Inorg. Chem. 13, 1836 (1974).
- [6] R. W. Baker & P.J. Pauling, J. Chem. Soc., Dalton 1972, 2264.
- [7] N.A. Malik & P.J. Sadler, Biochem. Soc. Trans. 7, 731 (1979).
- [8] N.A. Malik, G. Otiko & P.J. Sadler, J. Inorg. Biochem. 12, 317 (1980).
- [9] A.A. Isab & P.J. Sadler, J. Chem. Soc., Dalton 1981, 1657.
- [10] A.A. Isab & P.J. Sadler, J. Chem. Soc., Dalton 1982, 135.
- [11] N.J. De Stefano & J.L. Burmeister, Inorg. Chem. 10, 998 (1971).
- [12] H. Schmidbaur, J.R. Mandl, A. Wohlleben-Hammer & A. Fügner, Z. Naturforsch. 33b, 1325 (1978).

¹⁾ This seems a candidate for 2-D NMR spectroscopy.